
On the Weaknesses of Function Table
Randomization

Moritz Contag, Robert Gawlik, Andre Pawlowski, and Thorsten Holz

Horst Görtz Institute (HGI), Ruhr-Universität Bochum, Germany

Abstract. Latest defenses against code-reuse attacks focus on informa-
tion hiding and randomization as important building blocks. The main
idea is that an attacker is not able to find the position of the code she
wants to reuse, hence thwarting successful attacks. Current state-of-the-
art defenses achieve this by employing concepts such as execute-only
memory combined with booby traps.
In this paper, we show that an attacker is able to abuse symbol metadata
to gain valuable information about the address space. In particular, an
attacker can mimic dynamic loading and manually resolve symbol ad-
dresses. We show that this is a powerful attack vector inherent to many
applications using symbol resolving at runtime, an ubiquitous concept
in today’s systems. More importantly, we utilize this approach to resolve
and reuse functions otherwise unavailable to an attacker due to func-
tion table randomization. To confirm the practical impact of this attack
vector, we demonstrate how dynamic loading can be exploited to bypass
Readactor++, the state-of-the-art defense against code-reuse attacks, de-
spite its use of booby traps and virtual function table (vtable) randomiza-
tion. Furthermore, we present a novel approach to protect symbol meta-
data to defend against such attacks. Our defense, called Symtegrity, is
able to safeguard symbols from an attacker, whilst preserving functional-
ity provided by the loader. It is both orthogonal to existing defenses and
applicable to arbitrary binary executables. Empirical evaluation results
show that our approach has an overhead of roughly 8% during applica-
tion startup. At runtime, however, no noticeable performance impact is
measured, as evident from both browser and SPEC benchmarks.

1 Introduction

The continuous arms race between more sophisticated attacks and subsequent
defense mechanisms has led to several new primitives both sides can make use of.
More fine-grained ASLR [16] has been tackled by just-in-time ROP (JIT-ROP),
which discloses memory pages at runtime and builds a ROP sequence on the
fly [32]. In turn, several exploit mitigation systems have attempted to prevent
such disclosure using information hiding. Most notably, XnR [3] and HideM [15]
provide execute-only memory to mitigate direct code disclosure. Heisenbyte [33]
also distinguishes memory access patterns, but implements destructive code reads
instead of restricting access per se. Thus, it ensures that information read by
an adversary cannot be directly used in her exploit. TASR [4], on the other

hand, is a randomization-based approach, which indirectly prevents an attacker
from using the information she obtained before re-randomization. Finally, the
Readactor system employs multiple techniques (namely, execute-only memory
and trampolines) in order to overcome both direct and indirect memory disclo-
sure attacks [10].

Nonetheless, any form of fine-grained randomization or diversification is in-
herently limited when aiming to prevent attacks based on function reuse. While
an attacker will be limited in finding gadgets ending on a return, which reside at
any offset within a function, she can resort to building an exploit chain only con-
sisting of gadgets starting at a function beginning. The underlying idea is that
it is still possible to build a payload this way and, what is more, that there are
more sources leaking function addresses. Known function-reuse attacks [25, 30]
may obtain function addresses from functions imported from shared objects or
virtual function tables as used in C++ binaries, respectively. This has led to the
development of the state-of-the-art defense Readactor++ [11], which introduces
booby traps [9] and function table randomization on top of Readactor in order to
counter advanced function-reuse attacks. In particular, it prevents an attacker
from re-using functions at virtual function callsites in case of an information
leak. We consider Readactor++ to be the most complete mitigation to date.

On a more general note, any code-reuse attack requires an attacker to harvest
pointers to code sequences of her interest in order to perform the desired compu-
tation. However, depending on the application layout as well as defenses present,
not all interesting code sequences may be accessible via a pointer exposed by
the application itself. Hence, an attacker might be able to obtain the required
information by traversing the data structures present in the program’s address
space to obtain further pointers. Especially, the symbol table in Linux and the
export table in Windows applications provide valuable information for an at-
tacker. The symbols contained in this structure may refer to both functions and
data, whereas arguably, the former is of higher interest for an attacker. As the
loader parses the symbol table to serve symbol requests at runtime, it is naturally
mapped into the application’s address space. In Linux, symbol requests may be
dispatched due to the first attempt to execute a lazily-bound function imported
from another module (dynamic linking) or even explicitly upon a programmer’s
request (dynamic loading). Microsoft Windows uses a similar concept.

In this paper, we demonstrate that dynamic loading represents an attack sur-
face not considered before in detail. If an attacker is equipped with capabilities
to read from the symbol table, she is able to mimic the loader’s symbol-resolving
facilities and obtain function pointers of her choice exported by the module in
question. Consequently, dynamic loading can be considered an Achilles’ heel in-
herent to most applications: while strictly required in many practical scenarios,
we show that it represents a powerful attack vector against many defenses. More
specifically, we discuss the attack vector induced by dynamic loading in general,
along with the required background. To demonstrate the practical impact, we
show how the attack vector can be used to successfully exploit web browsers pro-
tected by the state-of-the-art exploit-mitigation system Readactor++. Along the

2

way, we also demonstrate how booby traps inserted into the vtables are ineffec-
tive against vtable crafting (i. e., the usage of fake vtables) attacks on Linux. To
ascertain feasibility on Windows the attack has also been implemented against
Internet Explorer successfully, but had to be omitted due to space limitations.

To counter this type of attack, we discuss potential defenses and propose
Symtegrity. In contrast, our defense leverages execute-only memory for hiding
information about symbols: we replace readable symbol metadata with references
to so-called oracles that return the symbol address when executed. The oracles
are protected via execute-only memory and booby traps, thus an attacker is not
able to disclose them (even in the presence of an arbitrary read/write primi-
tive). To demonstrate the practical feasibility of the approach, we implemented
a prototype of this defense for binary executables in a tool called Symtegrity.
While our defense induces a start-up overhead of around 8% for the Chromium
browser, the overhead during runtime is negligible in several browser benchmarks
and SPEC. To foster research on this topic, we make our implementation freely
available at https://github.com/RUB-SysSec/symtegrity.

In summary, we make the following contributions in this paper:

– Dynamic Loading as an Attack Vector. We show that dynamic loading
is a potential attack vector inherent to many applications and has to be
considered in the design of modern defenses.

– Overcoming function table randomization and boopy traps. We
demonstrate a novel attack against the Readactor++ system. Our generic
bypass is based on information used to implement dynamic loading and cir-
cumvents protective mechanisms present in Readactor++, such as booby
traps and function table randomization.

– Legacy-compatible, light-weight defense. We propose a robust defense
mechanism to mitigate the attack vector. It induces low overhead and can
be added to arbitrary binary executables. Additionally, it is orthogonal to
most proposed defenses.

2 Technical Background

2.1 Dynamic Loading

The linking process at build time, as well as the loading process at run time,
both allow for a variety of different approaches. In the following, we provide an
overview of both aspects and discuss why dynamic linking using lazy binding
and dynamic loading are the preferred approaches in practice.

Static linking describes the process of resolving symbols imported by a binary
object at compile time. The code or data belonging to the declared symbol
is copied verbatim into the object that uses the symbol. In contrast, dynamic
linking defers this process to runtime. Instead of copying the corresponding
data into the object that uses the symbol, the data lies in the object declaring
it, commonly called shared object or shared library. If a symbol is used for the

3

https://github.com/RUB-SysSec/symtegrity

first time (e. g., by calling an exported function), its address is resolved and
cached for further use (called lazy binding). Although it is possible to resolve
the addresses of all symbols during load time (so-called eager binding), it is not
used per default because it significantly slows down the loading process.

Dynamic linking using lazy binding is in practice the de-facto standard for
multiple reasons. For one, startup speed increases considerably, as symbols are
merely loaded on demand, and only necessary shared libraries are loaded to im-
prove responsiveness. Furthermore, when the same shared libraries are used by
multiple processes, they are only copied once into physical memory and shared
by these processes. In addition, dynamic linking has security implications: De-
laying symbol resolution to run time—as opposed to compile time—results in
more modular applications. Hence, if one component of an application is af-
fected by a security-critical vulnerability, this component can easily be updated
without having to recompile and redistribute the whole application. Dynamic
loading provides the programmer with capabilities comparable to those used by
the dynamic linker. Namely, he can load or unload shared objects into process
memory and resolve symbols at runtime. This approach is mostly taken if, due
to program logic, the choice of shared object is dependent on runtime state and
cannot be made at link-time. For example, an optional feature in a shared ob-
ject may only be loaded if said object file actually exists on disk. If the object is
missing, the feature it provides is not available, but the application as a whole
remains usable. To implement dynamic loading, the glibc standard library ex-
poses, amongst others, the APIs dlopen and dlclose for loading and unloading
objects, respectively. Furthermore, glibc provides APIs such as dlsym for resolv-
ing the address of a symbol within an object. Every object that exposes symbols
contains a symbol table describing metadata associated with a symbol. dlsym
parses said table upon looking up a symbol, which is why the information has
to be loaded into (readable) memory.

2.2 Execute-only Memory and Booby Traps

Execute-only memory is a technique that allows the operating system to protect
memory pages such that they are neither readable nor writable, but still exe-
cutable. This enables a plethora of use cases. Most notably, this concept goes
well with schemes relying on information hiding (e. g., of safe regions [19]). Dis-
covery of a hidden page does not immediately lead to disclosure of the page’s
content to the attacker. Consequently, execute-only memory protects against di-
rect memory disclosure as used in the just-in-time ROP (JIT-ROP) attack [32].

Booby traps, a concept proposed by Crane et al. [9], are a mechanism to ac-
tively detect and respond to attacks against a given application. The main idea
of booby traps is as follows: in a diversified application, code sequences—the
actual booby traps—are added that trigger an active response, such as termi-
nating the program or generating an alert. In a regular program run, these code
snippets lie dormant and do not interfere with the normal program execution.
However, if an attacker blindly executes a memory location, such as an entry in
a randomized vtable, chances are high that she will hit a booby trap early on.

4

This can be the case, for example, if the memory layout differs from what the
attacker expects due to diversification.

2.3 Readactor++ Overview

Readactor [10] and its follow-up, Readactor++ [11], are state-of-the-art exploit
mitigation systems. Due to space reasons, we can only briefly present the un-
derlying approach, for a more detailed overview we refer to the corresponding
papers and our technical report [8]. Readactor is a source-based solution and
consists of several components. Its compiler applies fine-grained code diversifi-
cation such that an attacker cannot make assumptions about the application’s
memory layout. Further, code and data are separated. This enables execute-only
memory, which is implemented using extended page tables (EPT). Consequently,
direct memory disclosure (as used in, e. g., JIT-ROP) is mitigated. Further, code
pointers are hidden by replacing direct code references with trampolines lying in
execute-only memory. This mitigates indirect memory disclosure, which leaks
code layout via code pointers stored on the stack or heap (e. g., return ad-
dresses). The attacker can now merely leak the addresses of the trampolines.
Readactor++ improves the system in order to mitigate function reuse attacks
such as RILC [25] and COOP [30]. The core insight is that knowing the layout of
function tables such as the Procedure Linkage Table (PLT) or virtual function
tables (vtables) in C++ applications gives an attacker enough information to
instantiate function-reuse attacks. Thus, Readactor++ chooses to randomize en-
tries within both kinds of tables and again uses trampolines to hide its contents.
Blind probing of table entries is mitigated by inserting booby traps in both PLT
and vtables.

2.4 Crash Resistance

Recently introduced attack primitives abused either the ability of programs to
restart or their ability to absorb critical access violations [13, 14, 31]. In both
client and server applications, such primitives were used to safely probe the pro-
gram’s address space. Hence, the process does not terminate or automatically
restarts if an address is queried that is either unmapped or not equipped with
read permissions. Consequently, such primitives can be used to attack any form of
information hiding : By simply scanning the whole address space, pages contain-
ing sensitive information (e. g., shadow stacks, process metadata, or encryption
keys) can be unveiled, although no direct references to these sensitive regions
exist. Especially probing the complete address space of complex applications,
such as web browsers, is achievable within one single process, as it may survive
erroneous memory accesses [14]. We term this type of crash resistance intra-
process crash resistance. Scanning for hidden information in network services
is possible within several processes, as each new request spawns a new server
process [13,31]. Each of these processes may terminate abnormally without ter-
minating the program. To distinguish this case (i. e., multiple processes are used
to enable crash resistance), we use the term inter-process crash resistance.

5

3 Caveats of Dynamic Loading

3.1 Attacker Model

For the rest of the paper, we assume that the adversary has found a vulner-
ability that eventually allows her to read from or write to an attacker-chosen
address, the latter with data of her choice (i. e., an arbitrary read/write primi-
tive). We further assume that the attacker operates in a scripting environment
(such as JavaScript within a browser) and can interactively respond to events
concerning the underlying application. In addition, we assume the attacker to
have knowledge about the system configuration, including applied defenses, and
the application’s source code.

In addition to defensive mechanisms assumed in attacker models of previous
works [10, 11, 30, 32], we assume a state-of-the-art exploitation mitigation such
as Readactor++ to be in place:

– Vtable Randomization and Booby Traps. Vtables are randomized and
their entries are hidden behind trampolines and interleaved with booby traps
(cf. Section 2.3).

– Writable ⊕ Executable Memory. The system allows memory pages to
be either executable or writable, but not both.

– Execute-only Memory. The system is able to mark pages as executable,
but neither writable or readable. We expect the target application to mark
code sections accordingly (e. g., trampolines).

– Fine-grained ASLR. The system provides capabilities to randomize ap-
plications at the function level (i. e., we assume a stronger randomization
compared to standard coarse-grained ASLR).

– Brute-forcing Mitigation. We expect the application to actively respond
to a detected attack, for example by preventing automatic restarts in re-
sponse to hitting a booby trap.

3.2 Attack Overview

The attack makes use of the fact that most of the memory that is used for the
dynamic loading mechanism has to be readable. Generally speaking, the attacker
is able to re-implement the system’s dynamic loading mechanics with the help
of available scripting engine capabilities and therefore can obtain the address of
critical functions like system in libc to execute a function-reuse attack. Har-
vesting code pointers is a critical step for most kinds of code-reuse attacks. For
one, overwriting a code pointer might eventually enable control over the pro-
gram counter, whereas proper combination of known pointers is a key ingredient
of modern exploit chains. With the recent advance of defense techniques that
limit the set of valid targets of an indirect control flow transfer, especially those
code pointers become important which point to the beginning of a function.
Given such pointers, an attacker can set up a function-reuse attack which re-
uses either whole functions or parts of it, starting from its entry up to a certain

6

instruction [18,25,30]. To be able to re-implement the dynamic loading mechan-
ics and resolve symbols of her choosing, the attacker has to obtain a module
base address (ideally the base address of the main module). This can be done
with the help of an existing information leak vulnerability or advanced offensive
techniques like crash-resistant scanning primitives [14]. Given the module’s base
address, the attacker is able to parse the binary file format header information
and traverse the structures that hold information about the loaded modules and
the symbols they export. In case of the glibc runtime, the attacker is able to
obtain the address of the link map data structure [17], a linked list. From there,
she can traverse the list to obtain the module base of any module loaded into
the process (e. g., by comparing against its file name). Then, given the correct
module base, she can resolve any exported symbol from the module by parsing
the file format in memory with the help of the scripting environment. Since the
loader requires these data structures to resolve symbols, they must be present
in memory.

Summing up, our attack relies on the fact that symbol metadata, while re-
quired by the loader for functionality such as dynamic loading, poses a viable
source of function pointer leaks which can be subsequently used when mounting
a function-reuse attack.

3.3 Example: Bypassing Readactor++

As an example of how an attacker can abuse dynamic loading in a function-
reuse attack against a state-of-the-art exploit-mitigation system, we show how
to exploit a Readactor++-protected variant of the Chromium web browser in
version 40.0. The software is running on Ubuntu 14.04 with Linux kernel 3.13
patched for EPT support. Note that we re-introduced the same bug (CVE-2014-
3176) the original Readactor++ paper protected against [24].

The instantiation of our attack follows the basic steps laid out in Section 3.2.
However, it has to account for some peculiarities of the exploit-mitigation system
in use, Readactor++. The main challenges lie in the randomized layout of virtual
function tables and the extensive use of execute-only memory. In summary, we
are able to bypass trampolines which hide code pointers by manually resolving
addresses of functions of interest. We use this facility to retrieve a function gadget
used in a later part of our attack and a critical function used in our payload.
Further, we are able to perform vtable crafting in order to bypass booby traps
(which lie in randomized vtables). This is possible because Readactor++ does
not restrict the set of vtables usable at a callsite. As the index into the vtable
is randomized at the callsite, execute-probing most likely triggers a booby trap.
Effectively, this yields no control over the entry that is called, preventing one
from mounting vtable reuse attacks such as COOP [30]. Instead, we craft a
fake vtable. Finally, we employ a new kind of crash resistance to probe the
callsite’s index and eventually execute our payload. This is implemented by
abusing Chromium’s process creation model.

7

Enabling Function-Reuse Attacks The general idea of our attack is to re-
place the xvtable pointer with a so-called Entry-point gadget, as introduced by
Göktaş et al. [18]. The gadget (EP gadget, for short) designates a sequence of in-
structions starting at a function entry and spanning all instructions till the first
indirect call or jump. To find a suitable gadget, we symbolically execute paths in
exported functions that start at function entry and end at an indirect call site.
Symbolic execution then lets us filter for paths where the indirect call target—
and its parameters—depends on the first parameter of the analyzed function
(passed via rdi). We found obstack newchunk, exported by libc, which even-
tually calls [rdi + 0x38] with [rdi + 0x48] as its first argument. If we can
execute the gadget and enforce the following layout on the object in rdi, system
gets called with the correct argument:

byte ptr [rdi + 0x50]← 1

qword ptr [rdi + 0x38]← &system

qword ptr [rdi + 0x48]← &system argument

Our analysis is similar to the one used to discover functions for function chain-
ing [14]. While our analysis yields several potential gadgets, we did not investi-
gate their feasibility, as one function gadget is enough to successfully mount our
attack. Because we target semantical properties only, the approach is invariant
to fine-grained diversification as employed by Readactor++ and similar defenses.

Obtaining the Gadget We obtain read/write primitives by using an out-of-
bounds access in Array.concat() and predict the allocation address of an object
of type XMLHttpRequest. As we are equipped with an arbitrary read/write prim-
itive, we can parse metadata of Chrome’s allocator, PartitionAlloc, to calculate
the bucket the next allocation of said object will be placed in.

The predicted object provides us with a pointer to an xvtable. It is important
to note that these pointers point into Chromium’s module range, so we can use
them to deduce its base address. However, we anticipate that in the context of
an attacker with crash resistance at her hand, it is hard to prevent leakage of
module base addresses, as the attacker is able to scan the memory until a module
base address is found. Since the memory is only read during the scan and not
executed, active countermeasures like booby traps are ineffective.

Given the module’s base address, we first obtain the pointer to the link map
structure, which contains information about all shared objects loaded into the
process space. We can then walk the list manually to find the base address of
the C standard library, libc, and resolve the EP gadget by walking the symbol
table. Hence, we mimic the loader’s functionality from the JavaScript context
and manually perform all necessary steps.

Preparing the Object Figure 1 depicts the modifications we make to the
predicted object. Essentially, we utilize vtable crafting to perform the attack.
This is possible since rvtable pointers are not enforced to lie in specific memory
pages or to belong to a set of whitelisted vtables. Hence, we can craft a fake
rvtable on the heap and make its xvtable pointer point to the beginning of our
EP gadget. Concretely, we add an offset i · (−5) to the EP gadget pointer such

8

offset to top

RTTI

_obstack_newchunk

fake rvtable

heap (RW)

_obstack_newchunk

libc (X)

db FB 48 83 EC 18

. . .

db 64 F6 41 55 41

db 41 57 41 56 48

db 54 55 53 48 89 ❷

(code of function
system)

libc
(X)

 call qword ptr [rbx + 0x38]

❶

+ 5 ⋅ i

&(fake rvtable)

&system

heap (RW)

object

&system

&system_arg

❸

Fig. 1: Schematic overview of our attack: we perform a vtable crafting attack
instead of a traditional vtable reuse attack. To this end, we put a fake rvtable
in memory and modify our object to point to it (edge ¶). Also, we prepare the
object according to the semantics of our EP gadget. In the rvtable, we replace
the xvtable pointer to point to our EP gadget instead (obstack newchunk, edge
·). If we hit a callsite to our object with an applicable index i, edge ¸ will call
system with the given argument.

that the beginning of the gadget lies in some entry within the xvtable. Also,
we modify the object according to the constraints given in Section 3.3. It is
crucial to note that by replacing the xvtable pointer, we bypass booby traps
completely. Booby traps in Readactor++ are interspersed among entries in the
xvtable. Our object interprets the function obstack newchunk itself as xvtable.
Therefore, callsites targeting the aforementioned object cannot trigger booby
traps, hence this defense approach does not hinder the attack in any way.

Triggering the Gadget Having set up the object, triggering the gadget is
not as straight-forward due to the randomized vtable layout in Readactor++.
Depending on the callsite, the application will call our gadget with an offset of
5 · i, with i ≥ 0 unknown (and limited by the number of entries in the xvtable).
To keep the application alive despite faults due to the unknown vtable offset, we
resort to a form of inter-process crash resistance by abusing the Zygote process
creation model as used in Chromium.

On startup, Chromium forks a designated process, the so-called Zygote, to
speed-up responsiveness when new tabs are opened [7]. In it, necessary shared
objects are already loaded and initialized. If a new tab is opened, the Zygote forks
a new process which is responsible for said tab (the renderer process). The forked
process inherits the Zygote’s memory layout and little additional initialization
is required. We can use this behavior to our advantage and spawn the function-
reuse attack outlined above. To this end, from one main tab, we spawn several
tabs, each running our exploit for a varying value of i. If a tab crashes due to
an access violation (i. e., our guess for i was wrong for this process), it does not
influence any other tabs. Eventually, one tab will succeed and execute system(·)

9

via the EP gadget. Note that our attack is invariant to the fact whether i is
randomized for the callsites in the renderer process after forking. We are not
dependent on the exact same memory layout in each renderer.

Increasing Bruteforce Efficiency Crane et al. anticipated bruteforce attacks
in the design of the Readactor system. Having to guess i correctly would mean
the defender can scale the number of guesses an attacker has to perform lin-
early by adding more elements to the application’s vtables. Considering the soft
boundaries on memory usage nowadays, this is a reasonable way to increase the
attack complexity a bit. Still, an attacker has multiple options. For one, she can
simply choose the smallest vtable she is still able to trigger a virtual callsite for.
But what is more, the correct choice of the EP gadget decreases the number
of guessing attempts by a factor. In our case, obstack newchunk allows execu-
tion from offsets 0, +5, and +10 without impacting the semantics of calling the
attacker’s designated function. This effectively increases the chance of guessing
one applicable index i by the factor of three.

4 Defense: Symbol Integrity

As discussed in Section 2.1, abandoning dynamic loading altogether is not an
option in typical environments. Hence, we propose in the following an approach
to restrict access to vital symbol information for every piece of code but the
loader itself that is also compatible with legacy binaries. This effectively prevents
an attacker from discovering any usable call targets using function exports and
prevents her from setting up a usable payload.

A related defense is implemented in Microsoft’s Enhanced Mitigation Ex-
perience Toolkit (EMET [23]). Its feature Export Address Table Filtering Plus
(EAF+) restricts accesses to symbol information coming from blacklisted mod-
ules. However, several bypasses exist [2, 14, 27] which leverage functionality in
white-listed modules to access export address tables. Further, since only spe-
cific pointers to the symbol table are protected by EMET, it is also possible to
scan for symbol tables in memory directly. In practice, EAF+ might also lead to
compatibility problems if a legacy module ends up on the blacklist for erroneous
reasons. This motivates us to provide a more complete protection that does not
rely on blacklists, but builds upon information hiding. In order to prove feasibil-
ity, we implemented our approach on top of the Readactor++ system in a tool
called Symtegrity. Our defense successfully mitigates attacks relying on symbol
resolution, such as the one presented in Section 3, and can be integrated into
existing defenses given that it utilizes an orthogonal defense approach.

4.1 High-level Overview

The basic idea of Symtegrity is to leverage execute-only memory for hiding infor-
mation about symbols. More specifically, we replace readable symbol metadata

10

with references to so-called oracles that return the symbol address when exe-
cuted. Since the oracles lie in execute-only memory, an attacker is not able to
directly disclose them by reading the corresponding process memory (even in
the presence of an arbitrary read/write primitive).

We implemented Symtegrity as a shared object for x86-64 Linux applications
using the glibc standard library. Our implementation is compatible with legacy
software and does not require source code access. Note that the general approach
is not necessarily limited to Linux applications, but can also be implemented for
different operating systems such as Microsoft Windows.

On startup, our defense processes each shared object needed by the pro-
tected application. In this step, the relative virtual addresses in symbol meta-
data (RVAs) are replaced by an index, whereas the RVA itself is stored in an
execute-only mapping. Further, this mapping is updated on every shared object
load. Entries in the mapping are not stored as data, but code: each entry is an
oracle that, when executed, yields the data point as return value. The defense
also hooks into various functions in the loader which should yield the RVA of
the function it has been queried for (the full list is given in our implementation).
In each of these functions, the hook re-translates the index back to the original
RVA at runtime by querying the corresponding oracle. Thus, at no point dur-
ing execution, the original symbol RVA is available to the attacker. It is only
passed via ephemeral local variables inside those functions in the loader that are
responsible for resolving symbols, such as dlsym. If an attacker already gathered
the address of this function, she could resolve symbols legitimately. Our defense
cannot protect applications that, by themselves, give access to such symbol reso-
lution oracles. In the following, we briefly discuss several implementation details.

Hiding the Mapping The mapping is allocated at program startup, or, in
case of forking applications, at the startup of the child process. This way, we
can ensure that we make proper use of ASLR as provided by the OS. Also,
we mitigate shortcomings of ASLR implementations in presence of the Zygote
model by re-randomizing the child process [20]. Further, the first entry in the
mapping does not start directly at the mapping base, but is shifted down by
a randomly chosen offset ∆ (cf. Figure 2). Indices are relative to the shifted
mapping and do not leak the range of ∆. Even if an attacker was able to deduce
the mapping base (i. e., the first page), she would not be able to call the oracle
corresponding to an index she retrieved from the symbol table. Finally, in spirit
of Readactor++, the mapping is guarded by inserting booby traps in between
benign oracles. This prevents an attacker from randomly querying oracles in a
page she assumes to be the mapping page and also prevents linear scans via
read/write primitives and blind/crash-resistant execution/probing. Effectively,
to probe any index, she would previously have to guess ∆ in order to obtain
the address of the first oracle. All other oracle indices are relative to that one.
However, since she has to resort to execution in order to probe entries, she will
eventually hit the booby trap and the attack is successfully detected. Note that
this is different from our assumption that an attacker is able to figure out the

11

base address of modules of her choice: in this case, she merely reads at particular
addresses in a crash-resistant manner. In case of the mapping, however, she has
to execute code while being able to recover from crashes. Due to the presence of
booby traps this is an adversarial scenario, since they actively react to probing
attempts. Counteracting this requires a much stronger crash resistance primitive
compared to the case of module base discovery.

Updating the Mapping Upon startup, the defense processes all shared objects
which are needed by the application and updates the mapping accordingly. The
same happens at runtime once a new module is loaded. Each symbol gets assigned
a random, unique index into the mapping (seeded anew for each process). The
index indirectly refers to an oracle returning the RVA of the symbol. This is
achieved by updating the ElfW(Sym) structure, which stores all metadata related
to a symbol. Its st value field contains the relative address from the module’s
base address to the symbol itself. Thus, the defense writes the assigned index
into the symbol’s st value field and assembles an oracle of the following form
in the mapping: mov rax, real rva; ret.

Note that during an update, the affected mapping page is unprotected for a
small time window. However, we aim to keep that window as small as possible.
Concrete empirical measurement results are presented in Section 4.2. The results
show that the window is far too small to be of practical use for an attacker and
we provide a more extensive discussion in Section 5.2. To mitigate an attacker
deliberately reloading shared objects to increase her chances, one could cache
the mapping per object and re-use it. As the mapping remains execute-only, the
attacker cannot prolong the update window. However, due to caching, indices
would not be re-randomized on the next library load. This does not help the
attacker though, as she has no knowledge about the mapping itself.

Symbol Translation Figure 2 depicts the translation process. While multiple
loader functions are hooked, we will describe the process using the example of
dlsym; other hooks are implemented in the same way. The hook operates at the
epilogue of dlsym. Hence, it obtains both the proper base address the requested
symbol lies in as well as the “encoded” index (due to our modifications, dlsym
returns a seemingly valid address of the form base + index, from which we
can deduce the index). From the index, Symtegrity calculates the offset into the
mapping by multiplying it with the size of an oracle. The oracle is then executed
and yields the real RVA in rax. The hook now adds the object’s base address to
rax and returns the resulting value, which is the full address to the symbol.

This sort of translation is applied to all relevant points in the loader and
supports all dynamic linking and loading features we encountered in common
applications, such as lazy binding, which resolves symbols on demand.

4.2 Evaluation Results

We evaluate the performance of Symtegrity on 64-bit Chromium 40.0 protected
with Readactor++. It runs on Ubuntu 14.04 with Linux kernel version 3.13 with

12

·calculate offset
·retrieve mapping
·call oracle
·adjust for base

.hook.text (X)

translate(value)

ElfW(Sym)

st_name
...

st_value
st_size

mapping

dynamic allocation (X)

Δ

return 0x724c0

return 0x9f130

return 0xeead0

return 0x54e00

(unused)

 jmp booby trap

 jmp booby trap

+ offset

address

return 0xcbb80

...

Fig. 2: The translate function receives an address encoding the index, with
which the defense previously overwrote the st value field. The function pro-
ceeds by scaling this index and use it as an offset into the mapping. By simply
executing the function at said offset, it receives the original RVA. After adding
the corresponding base address to it, the address is returned.

the Readactor patch. Due to the hypervisor used in Readactor++, we only use
one core of our Core i7 CPU clocked at 1.2 GHz and disabled advanced features
such as hyper-threading, an implementation requirement of Readactor++. 8 GiB
of physical memory are available on this test machine.

Startup Time In order to measure the baseline for the startup time, we added
a dependency on a custom shared object to Chromium and ensured that this
benchmarking library is initialized first. This enables us to measure the exact
time throughout all stages of the Zygote process creation model. The library
measures the path from the startup of Chromium to the entry point in the
renderer process spawned for the initial tab. This includes the time to fork and
initialize the Zygote, the Zygote to fork into a new renderer process, and to
execute till the entry point of the renderer process. In a second run, we repeat
the measurements with our defense applied. Finally, we take the geometric mean
over 100 runs.

Overall, Symtegrity induces an overhead of roughly 8% at startup. The un-
protected Chromium takes about 6.9 seconds to finish this measurement, whereas
the protected variant takes about 7.5 seconds on average. Note that this slow-
down mostly impacts the startup time of the Zygote, which is done only once
when starting the browser. Furthermore, the startup overhead is dependent on
the number of dynamically linked shared objects. An application that does not
link as many shared objects is subject to a lower overhead on startup. When
the Zygote process is already running, the additional delay in opening a new tab
with our defense in place is about 0.3 seconds. This delay is hardly noticeable
by a user working with the browser.

Load Time To further quantify the impact of our defense, we measured the
average time Symtegrity takes to update the symbol table of a newly loaded

13

shared object. Hence, we micro-benchmarked the function that processes every
object at Chromium startup (i. e., the startup of the Zygote process). Note that
the timings are also representative for the workload performed if an object is
loaded dynamically via dlopen. On startup, Chromium loads 84 shared objects
of varying size, which are all linked directly to the application. To set things into
perspective, the objects export 51,873 symbols which all have to be processed by
Symtegrity. Measuring the processing time for all 84 shared objects loaded on
startup yields a geometric mean of roughly 743 µs per shared object. Given that
new shared objects are not loaded as often at runtime as during the application’s
startup phase, we deem the performance overhead reasonable.

Absolute Calls We counted the number of actual calls dispatched to functions
related to symbol resolution. During startup, 7 calls to dlopen, 43 calls to dlsym,
and 217 calls to dl fixup were recorded. The first two APIs are manifestations
of dynamic loading, as discussed in Section 2.1. We emphasize that these calls
do not include shared objects loaded due to dynamic linking. The latter API is
called when a lazily-bound symbol is requested for the first time.

Mapping Update Finally, we measured the time in which parts of the mapping
are accessible via memory reads. This situation occurs every time the mapping
is updated (i. e., a new module is loaded for which oracles are inserted into the
mapping). We measured the time from which on write permissions are in place
(which imply read access as well) up to the point where permissions are switched
back to execute-only. We noticed differences when measuring the window and
hence distinguish two phases: one from application startup till the start of the
renderer process and another one from that point onwards. For each phase,
we averaged the results across multiple runs. For the first phase, covering the
application’s startup, 468,687 update events have been recorded. The geomet-
ric mean of the time window in which the mapping is unprotected is around
1,623 ns, whereas the average value is around 4,149 ns. Consequently, we de-
tected 316 outliers that diverge by more than one standard deviation, where the
maximum value lies at 9.948 ms. The second phase covers the time frame from
the renderer’s entry point to the point where it successfully loaded a page. Nat-
urally, we recorded fewer events. The geometric mean across 7,200 data points
is around 2,104 ns, the average value around 2,123 ns. As both timings are close
to each other, fewer outliers were found. The maximum value of all 83 outliers
lies at 0.0605 ms. While we are unable to give concrete evidence as for the root
cause of the higher number of outliers during startup, we suspect them to be due
to the high amount of mapping updates and a result of scheduling events. Still,
as an attacker does not yet have control over the application during startup, we
do not deem this a shortcoming of our approach.

Evidently, the duration in which the mapping is unprotected during an up-
date is far smaller after startup. We argue that this time window is far too small
to be of practical use for an attacker. A detailed discussion about the feasibility
of this attack and countermeasures is given in Section 5.2.

14

Benchmarks To evaluate Symtegrity’s performance overhead, we ran a SPEC
CPU2006 INT benchmark, using SPEC version 1.1. Specifically, we averaged
over 10 runs using the ref test set and 3 iterations per individual benchmark.
The top of Table 1 shows the results (lower numbers are better). It shows the
runtime of runs using both the unprotected program (second column) and the
one protected by Symtegrity (third column) as well as the relative overhead. The
overall overhead is based on the geometric mean of the individual benchmark
results. As evident from the table, our prototype implementation incurs almost
no observable overhead. This is expected, as the SPEC benchmarks are used to
measure performance overhead for computationally intensive tasks. Symtegrity,
however, only impacts runtime negatively during startup and upon calls to dy-
namic loading facilities.

Table 1: Results of the SPEC CPU2006 INT benchmarks (top; lower numbers
are better) and JetStream (bottom; higher numbers are better).

SPEC Benchmark Runtime (s) +Symtegrity (s) Rel. Overhead

400.perlbench 259 258 −0.55%
401.bzip2 386 387 +0.22%
403.gcc 246 247 +0.37%
429.mcf 289 288 −0.27%
445.gobmk 390 391 +0.36%
456.hmmer 367 368 +0.38%
458.sjeng 422 422 −0.18%
462.libquantum 316 316 +0.07%
464.h264ref 433 435 +0.42%
471.omnetpp 321 322 +0.39%
473.astar 345 347 +0.40%
483.xalancbmk 203 201 −0.80%

Overall SPEC
(geometric mean) 323.62 323.84 +0.0649%

Latency 43.014 ± 3.2720 42.641 ± 0.7330 +0.875%
Throughput 134.82 ± 3.9437 135.36 ± 1.5001 −0.399%

Overall JetStr. 81.934 ± 3.9436 81.812 ± 0.8489 +0.149%

We also conducted a benchmark using the JetStream 1.1 JavaScript bench-
mark suite [34]. It combines several well-known benchmarks, such as SunSpider,
Octane, and those of LLVM, and yields scores for latency, throughput, and an
overall score [34]. The bottom of Table 1 shows the results (higher numbers are
better). To perform the benchmark, we started the Chromium browser protected
by Readactor++ and ran the JetStream benchmark suite to obtain the Base col-
umn. We repeated the same process using the Readactor++-protected browser
with Symtegrity on top to obtain the measurement values in the column titled

15

+Symtegrity. JetStream runs each individual test three times and reports a score
for each, along with the specific scores shown in Table 1. Evidently, the overall
score of our defense lies well within the uncertainty of the base score, indicating
that no measurable overhead is introduced when considering the performance
of JavaScript in the browser. These results are expected, as Symtegrity mainly
affects the browser’s startup time.

To quantify the amount of new libraries that need to be hooked by our defense
when rendering a web page, we visited the global top 500 pages, as reported by
Alexa [1]. We allocated a time span of six seconds for each individual site to
load. All in all, only one new shared object, libfreebl3.so, would be loaded
dynamically, for 9 out of 500 pages. This is also due to the fact that Chromium
aims to optimize load times by pre-emptively loading objects on start up, as seen
in Section 4.2. This supports the fact that at runtime, only few (comparatively
costly) updates to the mapping have to be performed by Symtegrity.

5 Discussion

5.1 Scope and Limitations of our Defense

Symtegrity focuses on restricting access to vital symbol metadata to the respec-
tive functions in the loader. It is developed as an orthogonal defense mechanism
that is a crucial building block for state-of-the-art defenses that still expose
aforementioned data to an attacker. Our approach assumes that the protected
application does not expose an oracle to the attacker which is capable of leaking
symbol addresses. This covers both intentional oracles, which can be deemed
unlikely to occur in common applications, as well as any kind of side-channel.
For example, we suggest using eager binding in order to prevent exposing an
address oracle via resolving functions, such as proposed by Readactor++. Still,
detecting such cases in an automatic fashion arguably is hard and thus cannot
be covered by Symtegrity. This poses the greatest limitation of our approach.

Furthermore, in a full exploit-mitigation system, one also has to prevent the
attacker from disclosing function addresses directly. Since Symtegrity focuses on
preventing an adversary from resolving the symbol addresses manually by using
the available metadata, attacks using function addresses disclosed previously
are out of scope. Hence, Symtegrity is an important piece of the defense puzzle
rather than a full-fledged protection system on its own. To this end, we tested
an exemplary configuration in which we applied Symtegrity to a Readactor++-
protected application. Note that an attacker is unable to use any function pointer
in the Procedure Linkage Table (PLT) as it is randomized and interspersed
with booby trap entries. Therefore, in the case of Readactor++, she cannot use
symbol-resolving functions such as dlsym even if the application intentionally
exposes them. In the presence of such a defense, more sophisticated attacks that
directly scan the remaining readable memory to deduce symbol addresses from
its metadata are mitigated.

In the current design, an attacker can potentially correlate the oracle index
(found in the st value field) with the symbol itself, e. g., via the st name field of

16

the ElfW(Sym) structure. However, it is important to note that possible attack
scenarios using this correlation make assumptions that are difficult to satisfy
in practice. Assuming that the attacker knows both the symbol mapping’s base
address as well as the offset ∆ into the mapping (at which the first oracle lies),
she can query any oracle to retrieve the original RVA. Consequently, in its cur-
rent state, Symtegrity’s security relies on keeping the base address and ∆ secret.
This is achieved by the underlying system’s memory layout randomization ca-
pabilities, execute-only memory, as well as booby traps guarding the mapping
against execute-probing. Still, the attacker’s ability to correlate symbols and or-
acle indices can be counteracted by extending the current prototype system with
two features. First, we can protect the st name field in the same manner as we
already do with the st value field. A second extension would involve random-
ization of the layout of the symbol table in memory. This prevents attacks where
an attacker assumes the i-th function exported by, e. g., libc, to be system. By
applying the same reasoning to the non-randomized symbol table in memory, she
would still be able to correlate function and oracle index for a specific version
of the library, despite the protections in place. However, we assume the current
state of protection (randomization of base addresses, execute-only memory, ran-
dom offset ∆, and booby traps) to be sufficient. Given these assumptions, an
attacker is not able to query the oracle corresponding to a symbol of interest
in the current approach. As the aforementioned extensions would impact the
system overhead negatively, we decided not to include them at this point.

5.2 Data Race on Mapping Update

During dynamic loading, Symtegrity has to change the access permissions of the
mapping containing the symbol address oracles. This leaves them unprotected
for a small time frame in which an attacker could leak information by direct
memory disclosure (see Section 4.2). Namely, she would obtain the real symbol
RVA returned by an oracle. However, the attacker has to overcome multiple hur-
dles before being able to do so: First, she must be able to trigger the process in
which the mapping gets updated in the first place, i. e., load a new module into
the process. This is not a common feature in applications that can be triggered
arbitrarily by an attacker. In our tests only one shared object was dynamically
loaded after the startup process (see Section 4.2). Furthermore, even if the at-
tacker can trigger the dynamic loading of a shared object, she has to be able
to do it multiple times in order to win the race. Second, she has to know the
base address of the mapping and the random offset ∆ upfront. Third, the dis-
closure has to be fast enough to win the race against the defense re-protecting
the affected page with execute-only permissions. We consider these conditions
unlikely in practice.

5.3 Applicability of our Attack

In Section 3.3, we presented an exemplary attack on the state-of-the-art exploit
mitigation system Readactor++. We argue that our attack is feasible against

17

other defenses and hence we now discuss the applicability of our attack to related
approaches which also leverage information hiding for exploit mitigation.

HideM and XnR Gionta et al. presented HideM, a system implementing infor-
mation hiding in order to mitigate memory disclosure vulnerabilities [15]. This
is achieved by leveraging the TLB split mechanism which allows HideM to serve
different views into a page, depending on the type of access (data read or in-
struction fetch). Similarly, Backes et al. presented XnR (Execute-no-Read) [3],
which, to some extent, achieves a similar form of information hiding based on
non-present pages and a page fault handler. Both approaches aim to mitigate
direct disclosure of executable pages by either returning dummy values upon a
read or preventing read access altogether. Consequently, our attack is directly
applicable to either of the aforementioned systems. At no point during the at-
tack, direct disclosure of code pages is required.

Heisenbyte Tang et al. presented Heisenbyte, along with the concept of de-
structive code reads [33]. The main idea is that upon a read, the operation is
served, but the corresponding bytes are replaced by random values. Effectively,
this ensures that reads serviced from executable pages do no longer correspond
to the bytes that are executed at the very same address. What distinguishes
this system from HideM and XnR, regarding our attack, is the fact that it also
assumes load-time fine-grained ASLR. Our attack, however, neither reads ex-
ecutable pages nor does it make assumptions about the memory layout other
than the address at which an exported function (such as obstack newchunk)
lies. Hence, it should be applicable to Heisenbyte as well. Still, we recognize this
as an underlying requirement for all fine-grained randomization-based systems:
Such approaches have to be aware of any references into the code in order to
keep the program intact. A concrete instantiation would be support for dynamic
loading and symbol resolution. The aforementioned issue requires such systems
to either refrain from randomizing referenced locations such as function start
addresses or to deliberately update the references to be synchronous with the
new memory layout.

TASR Bigelow et al. presented TASR, a system to re-randomize an application’s
memory layout at predefined points in time [4]. TASR observes a set of system
calls associated with either category and re-randomizes the memory layout every
time one of these syscalls is requested. Making a definite statement about the
applicability of our attack in presence of TASR is difficult. For one, TASR does
not explicitly take JIT engines into account. Consequently, applicability highly
depends on where the I/O boundary is placed between the scripting engine
and the native context. More specifically, searching the module base would most
likely not trigger re-randomization as no syscalls are involved. Still, triggering the
object’s callsite may very well involve syscalls along the way and re-randomize
the memory layout. Also, the validity of obtained symbol RVAs may be affected,

18

depending on the way such references are kept synchronous. In the end, one has
to consider trade-offs in order to meet the performance requirements imposed
upon the scripting facilities in modern browsers when placing the I/O boundary.
Unfortunately, TASR’s implementation is not available such that we have to
discuss these aspects solely on the claims made in the original paper.

5.4 Limitations of our Attack

While the attacks presented in Section 3.3 primarily serve as a proof-of-concept
to demonstrate how an attacker can abuse dynamic loading, we discuss in the
following some practical hurdles we came across in the Readactor++ bypass (see
also our TR [8]). First, we had to disable Chromium’s popup blocker. With
the popup blocker in place, our main tab would not have been able to spawn
the additional tabs that effectively brute-force the unknown index i. While this
is a limitation of our attack against the Readactor++-protected Chromium, it
is no inherent limitation of the underlying attack vector. However, spawning
several tabs of which one is the succeeding exploit and others abort abnormally
is usually prevented, because browsers do not restart on crashes. This was solved
with inter-process crash resistance, and could be prevented by locking the system
after exceeding a specific number of tab crashes. However, browser vendors trade
off usability in favor of security in this case. Note that we only chained together
two exported functions: obstack newchunk is used as first gadget to execute
system at a C-style callsite, to perform our attack. Chaining multiple EP gadgets
does not impact bruteforcing, i. e., we do not need to spawn more tabs. This is
due to the fact that we can gather exports (code pointers) with read instructions
(mimicking dlsym) from JavaScript. We only need to bruteforce the randomized
index in the fake vtable to start the chain (i. e., execute a fake virtual function,
our first gadget). This is done to circumvent booby traps. The subsequent EP
gadgets are called at C-style callsites in the current gadget and are unprotected
in Readactor++. However, if an attacker wants to chain EP gadgets which call
subsequent gadgets at virtual function callsites, bruteforcing attempts would
increase drastically, because different virtual function callsites would need to be
bruteforced for the appropriate virtual function index. This is likely to reduce
exploit success. Hence, we did not pursue such gadget chains further. For our
attack, we disabled Chromium’s seccomp sandbox. Obviously, it limits our ability
to dispatch specific system calls, but does not prevent code execution per se,
which was the sole aim of our function-reuse attack.

6 Related Work

We already discussed several papers closely related to our work and review sev-
eral other related papers in the following. Similar to Readactor, execute-only
memory was implemented for mobile devices by LR2 [5]. By preventing attackers
to use load instructions and hiding pointers to code, protected programs become
resilient against memory disclosures. While this defense introduces execute-only

19

memory to a different architecture, our approach is complementary as it enables
protection of those functions that have to remain at discoverable locations, i. e.,
exports. Similarily, kRˆX introduces execute-only memory to protect against
code-reuse in the kernel [28], while our approach aims to protect against ad-
versaries targeting complex userspace programs such as browsers. Shuffler, a
re-randomization scheme thwarting JIT-ROP, is complementary to our defense,
since we target an adversary trying to gather export symbols. It continuously
changes code locations, and hence, impedes code-reuse attacks significantly [35].
Due to the time delay between memory disclosures used to build the attacker’s
gadget chain and its execution, the payload will fail, as the gadgets are else-
where in the address space. A binary-only code diversifier, dubbed CodeArmor,
protects code pointers against disclosure and re-randomizes code mappings to
hinder code-reuse attacks [6]. Our defense is different as it aims at protecting
symbol mappings, without significant run-time overhead. While more narrow in
scope, it complements existing (compiler-based) code pointer hiding techniques.

ASLR-Guard [21] also uses information hiding to protect code locations. In
contrast to Readactor, it does not require execute-only memory. Their approach
assumes fine-grained ASLR and encrypts all code pointers to prevent an attacker
from leaking information. The concept of code pointers encryption [22] can al-
ternatively be used for Symtegrity when execute-only memory is not available.
Instead of replacing symbol metadata with oracles in execute-only memory, one
could encrypt the metadata with a key hidden in memory, whose location is
only known to the symbol resolving functions. Unfortunately, this approach is
vulnerable to adversaries which have a strong memory scanning primitive such
as crash resistance at hand.

The attacks proposed by Di Federico et al. [12] are similar in spirit to the one
we propose, as they also leverage the glibc runtime’s symbol resolving capabil-
ities. Instead of manually walking through the symbol resolution process, they
use the internal functions responsible for resolving the addresses in the first place
and call them on manipulated metadata. However, our attacker model does not
cover the case where the corresponding function addresses already leaked to an
attacker. Furthermore, their approach assumes that the targeted application is
not a position-independent executable (PIE) and lazy binding is used either by
the target binary itself or by at least one of the shared objects it depends on. This
prerequisite is not required by our approach. Rudd et al. [29] recently propose a
novel class of code-reuse attacks. Similar to our work, feasibility of their attack
is shown on the example of Readactor and, in particular, indirect code point-
ers as implemented using, e. g., trampolines. However, instead of brute-forcing
the randomized index into a vtable, they profile trampoline pointers and are
subsequently able to induce malicious behavior using indirect code pointers.

Another defense that targets the loader itself is Safe Loading by Payer et
al. [26]. They replace the default loader with a hardened one which effectively
acts as a user-space sandbox. Modifications include restriction of existing func-
tionality, such as preloading, and the addition of new security-related functional-

20

ity, such as indirect branch checking. Nevertheless, the symbol resolution process
still makes use of a module’s symbol table. Consequently, our approach can be
used to further refine the safe loader.

7 Conclusion

In this paper, we showed how existing mitigations can still be bypassed by
proposing a novel attack vector based on symbol metadata. To demonstrate
that such attacks are indeed feasible in practice, we provide a concrete instanti-
ation of our attack against Readactor++ and are the first to demonstrate how
the general concept of this defense can be bypassed. Furthermore, we mitigate
the attack vector by replacing easily-accessible metadata with oracles located in
execute-only memory that yield the corresponding value upon execution. Future
defenses need to take symbol metadata into account given that this attack vector
turns out to be the Achilles’ heel of state-of-the-art defenses.

References

1. Alexa Internet, Inc. Top 500 Sites on the Web. http://www.alexa.com/topsites.
2. A. Alsaheel and R. Pande. Using EMET to Disable EMET. https://www.fireeye.

com/blog/threat-research/2016/02/using emet to disabl.html.
3. M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger, and J. Pewny. You Can

Run But You Can’t Read: Preventing Disclosure Exploits in Executable Code. In
ACM CCS, 2014.

4. D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H. Okhravi. Timely Reran-
domization for Mitigating Memory Disclosures. In ACM CCS, 2015.

5. K. Braden, L. Davi, C. Liebchen, A.-R. Sadeghi, S. Crane, M. Franz, and P. Larsen.
Leakage-Resilient Layout Randomization for Mobile Devices. In NDSS, 2016.

6. X. Chen, H. Bos, and C. Giuffrida. CodeArmor: Virtualizing the Code Space to
Counter Disclosure Attacks. In IEEE EuroS&P, 2017.

7. Chromium. Usage of the Zygote Process Creation Model in Chromium. https:
//chromium.googlesource.com/chromium/src/+/master/docs/linux zygote.md.

8. M. Contag, R. Gawlik, A. Pawlowski, and T. Holz. Technical Report: On the
Weaknesses of Function Table Randomization. Technical report, Ruhr-Universität
Bochum, 2018.

9. S. Crane, P. Larsen, S. Brunthaler, and M. Franz. Booby Trapping Software. In
ACM Workshop on New Security Paradigms (NSPW), 2013.

10. S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi, S. Brun-
thaler, and M. Franz. Readactor: Practical Code Randomization Resilient to Mem-
ory Disclosure. In IEEE S&P, 2015.

11. S. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen, L. Davi, A.-R. Sadeghi,
T. Holz, B. D. Sutter, and M. Franz. It’s a TRAP: Table Randomization and
Protection against Function Reuse Attacks. In ACM CCS, 2015.

12. A. Di Federico, A. Cama, Y. Shoshitaishvili, C. Kruegel, and G. Vigna. How the
ELF ruined Christmas. In USENIX Security, 2015.

13. I. Evans, S. Fingeret, J. González, U. Otgonbaatar, T. Tang, H. Shrobe,
S. Sidiroglou-Douskos, M. Rinard, and H. Okhravi. Missing the Point(er): On
the Effectiveness of Code Pointer Integrity. In IEEE S&P, 2015.

21

http://www.alexa.com/topsites
https://www.fireeye.com/blog/threat-research/2016/02/using_emet_to_disabl.html
https://www.fireeye.com/blog/threat-research/2016/02/using_emet_to_disabl.html
https://chromium.googlesource.com/chromium/src/+/master/docs/linux_zygote.md
https://chromium.googlesource.com/chromium/src/+/master/docs/linux_zygote.md

14. R. Gawlik, B. Kollenda, P. Koppe, B. Garmany, and T. Holz. Enabling Client-Side
Crash-Resistance to Overcome Diversification and Information Hiding. In NDSS,
2016.

15. J. Gionta, W. Enck, and P. Ning. HideM: Protecting the Contents of Userspace
Memory in the Face of Disclosure Vulnerabilities. In ACM CODASPY, 2015.

16. C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum. Enhanced Operating System
Security through Efficient and Fine-Grained Address Space Randomization. In
USENIX Security, 2012.

17. glibc. link.h header file, defining link map. https://github.com/bminor/glibc/
blob/master/include/link.h.

18. E. Göktaş, E. Athanasopoulos, H. Bos, and G. Portokalidis. Out of Control: Over-
coming Control-Flow Integrity. In IEEE S&P, 2014.

19. V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song. Code-
Pointer Integrity. In USENIX OSDI, 2014.

20. B. Lee, L. Lu, T. Wang, T. Kim, and W. Lee. From Zygote to Morula: Fortifying
Weakened ASLR on Android. In IEEE S&P, 2014.

21. K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and W. Lee. ASLR-Guard: Stopping
Address Space Leakage for Code Reuse Attacks. In ACM CCS, 2015.

22. A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières. CCFI: Cryptographically
Enforced Control Flow Integrity. In ACM CCS, 2015.

23. Microsoft. The Enhanced Mitigation Experience Toolkit. https://support.
microsoft.com/en-us/kb/2458544.

24. National Vulnerability Database. Vulnerability Summary for CVE-2014-3176.
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-3176.

25. Nergal. The advanced return-into-lib(c) exploits: PaX case study. http://phrack.
org/issues/58/4.html.

26. M. Payer, T. Hartmann, and T. R. Gross. Safe Loading – A Foundation for Secure
Execution of Untrusted Programs. In IEEE S&P, 2012.

27. Piotr Bania. Bypassing EMET Export Address Table Access Filtering feature.
http://piotrbania.com/all/articles/anti emet eaf.txt.

28. M. Pomonis, T. Petsios, A. D. Keromytis, M. Polychronakis, and V. P. Kemerlis.
kRˆX: Comprehensive Kernel Protection against Just-In-Time Code Reuse. In
ACM European Conference on Computer Systems (EuroSys), 2017.

29. R. Rudd, R. Skowyra, D. Bigelow, V. Dedhia, T. Hobson, S. Crane, C. Liebchen,
P. Larsen, L. Davi, M. Franz, et al. Address-Oblivious Code Reuse: On the Effec-
tiveness of Leakage-Resilient Diversity. In NDSS, 2016.

30. F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz. Coun-
terfeit Object-oriented Programming: On the Difficulty of Preventing Code Reuse
Attacks in C++ Applications. In IEEE S&P, 2015.

31. H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh. On the
Effectiveness of Address-Space Randomization. In ACM CCS, 2004.

32. K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-R. Sadeghi.
Just-in-time Code Reuse: On the Effectiveness of Fine-grained Address Space Lay-
out Randomization. In IEEE S&P, 2013.

33. A. Tang, S. Sethumadhavan, and S. Stolfo. Heisenbyte: Thwarting Memory Dis-
closure Attacks using Destructive Code Reads. In ACM CCS, 2015.

34. WebKit. JetStream JavaScript benchmark suite. http://browserbench.org/
JetStream/.

35. D. Williams-King, G. Gobieski, K. Williams-King, J. P. Blake, X. Yuan, P. Colp,
M. Zheng, V. P. Kemerlis, J. Yang, and W. Aiello. Shuffler: Fast and Deployable
Continuous Code Re-Randomization. In USENIX OSDI, 2016.

22

https://github.com/bminor/glibc/blob/master/include/link.h
https://github.com/bminor/glibc/blob/master/include/link.h
https://support.microsoft.com/en-us/kb/2458544
https://support.microsoft.com/en-us/kb/2458544
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-3176
http://phrack.org/issues/58/4.html
http://phrack.org/issues/58/4.html
http://piotrbania.com/all/articles/anti_emet_eaf.txt
http://browserbench.org/JetStream/
http://browserbench.org/JetStream/

	On the Weaknesses of Function Table Randomization

